Reforço: Conjuntos e Diagonalização

Computabilidade e Complexidade

Márcio Nicolau

2025-08-18

Table of contents

Objetivos da Aula	
Conteúdo	 Ĺ
Revisitando o "Tamanho" dos Infinitos	 L
A Diagonalização: A Receita para Provar o Impossível	 2
Aplicações: De Cantor a Turing	 2
Exercícios de Verificação	 5
Referências Bibliográficas	 ó
List of Figures	
1 A lógica universal da prova por diagonalização	

Objetivos da Aula

- Revisar e solidificar a diferença entre conjuntos enumeráveis e não-enumeráveis.
- Aprofundar a compreensão da técnica de prova por diagonalização.
- Conectar explicitamente a diagonalização de Cantor com a prova da indecidibilidade do Problema da Parada.
- Reforçar por que esses conceitos são a base para os limites da computação.

Conteúdo

Revisitando o "Tamanho" dos Infinitos

No início do curso, estabelecemos uma ideia que parece paradoxal: nem todos os infinitos são do mesmo tamanho. Essa distinção é a pedra angular para entender por que existem problemas que os computadores não podem resolver. (Sipser, 2012)

i Definições Essenciais (Revisão)

- Conjunto Enumerável (ou Contável): Um conjunto é enumerável se seus elementos podem ser listados em uma sequência (ou seja, se existe uma correspondência um-para-um com os números naturais ℕ). Exemplos incluem os inteiros (ℤ), os racionais (ℚ) e, crucialmente, o conjunto de todos os programas de computador válidos.
- Conjunto Não-Enumerável (ou Incontável): Um conjunto infinito que é "maior" que os números naturais. É impossível listar todos os seus elementos. O exemplo clássico é o conjunto dos números reais (R). O exemplo mais importante para nós é o conjunto de todas as linguagens possíveis (ou seja, todos os problemas computacionais).

A conclusão fundamental para a ciência da computação é este descompasso:

Temos uma quantidade **enumerável** de possíveis soluções (programas), mas uma quantidade **não-enumerável** de possíveis problemas (linguagens).

Isso, por si só, já garante que devem existir problemas para os quais não há solução algorítmica. A ferramenta que nos permite provar isso rigorosamente é a diagonalização.

A Diagonalização: A Receita para Provar o Impossível

A prova por diagonalização é uma das técnicas mais elegantes e poderosas da matemática e da computação. É uma forma de prova por contradição com uma "receita" bem definida.

! A Receita da Diagonalização

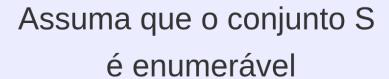
Para provar que um conjunto S é não-enumerável:

- 1. Assuma o Contraditório: "Suponha que S seja enumerável."
- 2. Liste os Elementos: Se é enumerável, podemos criar uma lista infinita e_1, e_2, e_3, \dots que contém todos os elementos de S.
- 3. Construa a Grade: Organize essa lista em uma grade infinita, onde cada linha representa um elemento e cada coluna representa uma "característica" ou "parte" desse elemento.
- 4. Construa o Antagonista: Crie um novo elemento, o "antagonista" D, olhando para a diagonal da grade. A construção de D garante que sua i-ésima característica seja diferente da i-ésima característica do i-ésimo elemento da lista (e_i) .
- 5. Encontre a Contradição: O antagonista D é, por construção, um elemento válido do conjunto S. No entanto, ele não pode ser igual a nenhum elemento da lista, pois difere de e_i na i-ésima posição. Isso contradiz a suposição de que a lista continha todos os elementos.
- 6. Conclua: A suposição inicial era falsa. O conjunto S é não-enumerável.

Diagrama: A Lógica da Diagonalização

Aplicações: De Cantor a Turing

A genialidade de Turing foi perceber que essa mesma lógica poderia ser aplicada não apenas a números, mas a **computações**.



Liste todos os elementos: L = $(e_1, e_2, e_3, ...)$

Construa a grade infinita

Construa o 'Antagonista' D modificando a diagonal da grade

Aplicação de Cantor (Revisão)

- Conjunto: Números reais \mathbb{R} entre 0 e 1.
- Grade: Linhas são os números reais (r_i) ; colunas são seus dígitos decimais.
- **Diagonal**: O *i*-ésimo dígito do *i*-ésimo número.
- Antagonista: Um novo número real cujos dígitos são diferentes dos dígitos da diagonal.

Aplicação de Turing (A Prova do Problema da Parada)

- Conjunto: Todas as Máquinas de Turing.
- Grade: As linhas são todas as TMs (M_i) . As colunas também são todas as TMs (M_j) . A célula (i,j) contém o resultado da execução de M_i na entrada $\langle M_i \rangle$.
- Diagonal: A célula (i,i), que representa o que a máquina M_i faz quando recebe sua **própria descrição** como entrada.
- Antagonista: A máquina D que, ao receber $\langle M_i \rangle$, primeiro simula o comportamento da diagonal $(M_i \text{ em } \langle M_i \rangle)$ e depois faz **o oposto**.

Diagrama: O Paralelismo entre Cantor e Turing

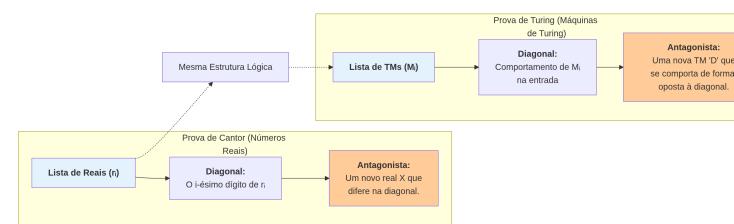


Figure 2: A mesma lógica de diagonalização usada em dois domínios diferentes.

Quando nos perguntamos "o que a máquina antagonista D faz com sua própria descrição $\langle D \rangle$?", estamos forçando-a a olhar para sua própria posição na diagonal, onde, por construção, ela deve fazer o oposto de si mesma, levando à contradição.

Exercícios de Verificação

i Atividade Prática de Reforço

- 1. **Conceitual**: Explique com suas próprias palavras por que o conjunto de todas as strings finitas compostas pelos caracteres 'a', 'b' e 'c' é **enumerável**. Qual seria uma estratégia para listá-las sem deixar nenhuma de fora?
- 2. **Aplicação da Técnica**: Considere o conjunto F de todas as funções de N para N (ou seja, funções que recebem um número natural e retornam um número natural). Esboce um argumento de diagonalização para provar que este conjunto F é **não-enumerável**.
- 3. Conexão Final: Na prova da indecidibilidade de A_{TM} , a máquina antagonista D usa um suposto decisor H como sub-rotina. Qual é o papel da **diagonal** nessa prova específica? O que a consulta $H(\M)$, M) representa em termos da "grade" de Turing?

Referências Bibliográficas

SIPSER, Michael. **Introdução à Teoria da Computação**. 3. ed. São Paulo, Brasil: Cengage Learning, 2012.