Revisão: P, NP e NP-Completude

Computabilidade e Complexidade

Márcio Nicolau

2025-11-10

Table of contents

Obj	etivos da Aula		
	tteúdo		
	O Grande Mapa da Complexidade de Tempo		
	Resolver vs. Verificar: A Distinção Crucial		
	A Receita para Provar NP-Completude		
	Estudo de Caso: 3-SAT é NP-Completo		
	Implicações Práticas em Código		
	Exercícios de Verificação		
Refe	erências Bibliográficas		
${f List}$	of Figures		
1	A estrutura acreditada das classes de complexidade, mostrando P, NP e os problemas NP-Completos		
Ob: -4	irrog do Aulo		

Objetivos da Aula

- Solidificar a distinção fundamental entre resolver um problema (P) e verificar uma solução (NP).
- Reforçar o conceito de NP-Completude como a "fronteira da intratabilidade".
- Praticar a identificação de problemas em P e NP.
- Revisar a técnica de redução em tempo polinomial para provar NP-Completude.

Conteúdo

O Grande Mapa da Complexidade de Tempo

Deixamos para trás o mundo da decidibilidade e entramos no reino da eficiência. O foco agora não é se um problema pode ser resolvido, mas se ele pode ser resolvido em um tempo razoável.

Definições Essenciais (Revisão)

- Classe P (Tempo Polinomial): Problemas que podem ser resolvidos eficientemente. Existe um algoritmo determinístico que os decide em tempo $O(n^k)$. Estes são os problemas "tratáveis".
- Classe NP (Tempo Polinomial Não-Determinístico): Problemas para os quais uma solução proposta (um "certificado") pode ser verificada eficientemente.
- NP-Completo (NPC): Um subconjunto de NP que contém os problemas "mais difíceis" da classe. Se qualquer problema NPC puder ser resolvido em tempo polinomial, então **todos** os problemas em NP também poderão, o que implicaria que P = NP.
- Redutibilidade Polinomial (A ≤_p B): A ferramenta para provar que um problema B é pelo menos tão difícil quanto um problema A, de forma eficiente.

A relação mais importante a se lembrar é que $P \subseteq NP$. A grande questão em aberto é se essa inclusão é estrita $(P \subset NP)$ ou não (P = NP).

Diagrama: O Mundo de NP (se $P \neq NP$)

Resolver vs. Verificar: A Distinção Crucial

A intuição por trás de P vs. NP reside na diferença entre criar e criticar. É mais fácil criticar uma obra de arte (verificar) do que criar uma obra-prima do zero (resolver).

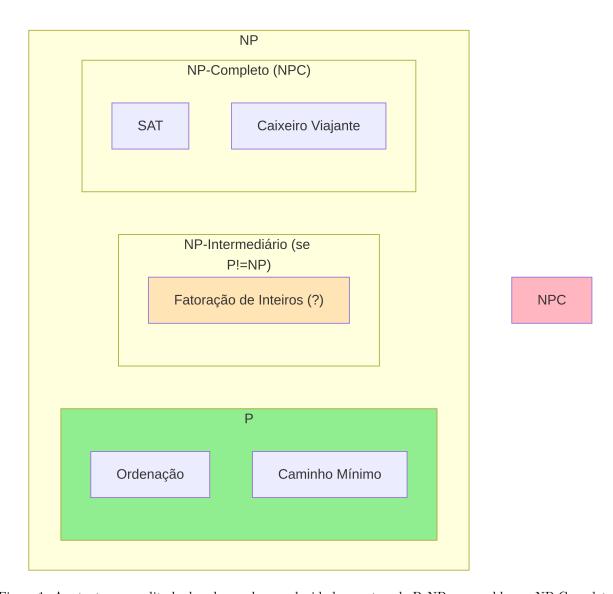
Característica	Problemas em P	Problemas em NP
Foco	Resolver	Verificar
Tempo	Resolução rápida (polinomial)	Verificação rápida (polinomial)
Exemplo	Encontrar o caminho mais curto em um mapa.	Dado um caminho, verificar se ele é o mais curto.
Status	Considerado "fácil" ou tratável.	Pode ser "difícil", mas as soluções são fáceis de reconhece

A Receita para Provar NP-Completude

Provar que um problema X é NP-Completo é um procedimento padrão com dois passos:

- 1. Mostrar que $X \in \mathbf{NP}$:
 - Defina qual é o "certificado" (a prova ou solução).
 - Descreva um algoritmo verificador que, dado o problema e o certificado, confirma a solução em tempo polinomial.
- 2. Mostrar que X é NP-Difícil:
 - Escolha um problema Y que você **já sabe** ser NP-Completo (geralmente 3-SAT).
 - Construa uma redução em tempo polinomial $Y \leq_p X$.
 - A redução é uma função f que transforma instâncias de Y em instâncias de X.
 - Prove que a transformação preserva a resposta: $w \in Y \iff f(w) \in X$.

Se ambos os passos forem bem-sucedidos, você provou que X é um dos "problemas mais difíceis em NP".



Figure~1:~A~estrutura~acreditada~das~classes~de~complexidade,~mostrando~P,~NP~e~os~problemas~NP-Completos.

Estudo de Caso: 3-SAT é NP-Completo

O problema **3-SAT** é uma versão restrita do SAT e é a ferramenta de redução mais comum.

Problema 3-SAT: Dada uma fórmula booleana em Forma Normal Conjuntiva (um E de cláusulas), onde cada cláusula é um OU de **exatamente três** literais (ex: $(x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_4)$), a fórmula é satisfatível?

Prova de que 3-SAT é NP-Completo: 1. 3-SAT \in NP: O certificado é uma atribuição de Verdadeiro/Falso para as variáveis. O verificador simplesmente substitui esses valores na fórmula e calcula o resultado. Isso é muito rápido (linear no tamanho da fórmula). 2. 3-SAT é NP-Difícil: A prova é feita mostrando que SAT \leq_p 3-SAT. Existe um procedimento engenhoso (e polinomial) que converte qualquer cláusula do SAT em um conjunto de cláusulas de 3 literais, preservando a satisfatibilidade.

Como 3-SAT é NP-Completo, ele se torna nosso novo "ponto de partida" para provar que outros problemas, especialmente em grafos, também são NP-Completos.

Implicações Práticas em Código

Quando confrontado com um problema que se suspeita ser NP-Completo na vida real, como otimizar a rota de entrega de pacotes (uma variante do TSP), a teoria nos diz o que fazer.

```
# Problema: Encontrar o menor tour no Caixeiro Viajante (TSP)
distancias = {
    ('A', 'B'): 10, ('A', 'C'): 15, ('A', 'D'): 20,
    ('B', 'A'): 10, ('B', 'C'): 35, ('B', 'D'): 25,
    ('C', 'A'): 15, ('C', 'B'): 35, ('C', 'D'): 30,
    ('D', 'A'): 20, ('D', 'B'): 25, ('D', 'C'): 30,
}
cidades = ['A', 'B', 'C', 'D']
def calcular_custo_tour(tour):
   custo = 0
   for i in range(len(tour) - 1):
        custo += distancias.get((tour[i], tour[i+1]), float('inf'))
   return custo
# Abordagem 1: Força Bruta (Exponencial, intratável para n > 15)
def tsp forca bruta(cidades):
    # Gera todas as permutações de cidades e encontra a de menor custo
    # Complexidade O(n!)
    # ... código omitido por ser muito lento ...
   print("Abordagem 1: Força Bruta (intratável para muitas cidades).")
   return "Um tour ótimo, mas demorou uma eternidade."
# Abordagem 2: Heurística do Vizinho Mais Próximo (Rápida, mas não garante o ótimo)
def tsp_heuristica_vizinho_proximo(cidades, inicio):
   tour = [inicio]
```

```
nao_visitadas = set(cidades)
   nao visitadas.remove(inicio)
   atual = inicio
    while nao_visitadas:
        proximo = min(nao_visitadas, key=lambda cidade: distancias.get((atual, cidade), float('inf')))
        tour.append(proximo)
        nao_visitadas.remove(proximo)
        atual = proximo
    tour.append(inicio) # Volta para o começo
   print("Abordagem 2: Heurística (rápida, solução 'boa o suficiente').")
   return tour
# Conclusão prática: usamos a heurística
tour_aproximado = tsp_heuristica_vizinho_proximo(cidades, 'A')
custo aproximado = calcular custo tour(tour aproximado)
print(f"Tour encontrado: {tour_aproximado} com custo {custo_aproximado}")
Abordagem 2: Heurística (rápida, solução 'boa o suficiente').
```

Exercícios de Verificação

i Atividade Prática de Revisão

1. P, NP ou NPC?: Classifique os seguintes problemas e justifique:

Tour encontrado: ['A', 'B', 'D', 'C', 'A'] com custo 80

- L_1 : Dado um grafo, ele contém um triângulo (um clique de tamanho 3)?
- L_2 : Dado um inteiro N, ele possui um fator primo menor que k?
- L₃: Dado um conjunto de tarefas com durações e prazos, é possível agendá-las em uma única máquina para cumprir todos os prazos? (Dica: Pense na dificuldade de encontrar a ordem certa).
- 2. A Lógica da Redução: Você está tentando provar que o problema COLORAÇÃO DE GRAFOS (colorir um grafo com k cores sem que vizinhos tenham a mesma cor) é NP-Completo. Você já sabe que ele está em NP. Qual das seguintes reduções seria o passo correto?
 - a) COLORAÇÃO \leq_p 3-SAT
 - b) 3-SAT \leq_p COLORAÇÃO
 - c) CAMINHO MÍNIMO \leq_n COLORAÇÃO
- 3. A Consequência do P=NP: Se fosse provado que P=NP, o que isso significaria para o conceito de "criatividade"? Argumente brevemente se isso eliminaria a necessidade de "insights" criativos para resolver problemas difíceis.

Referências Bibliográficas