Revisão: Redutibilidade, Completude e Indecidibilidade Computabilidade e Complexidade

Márcio Nicolau

2025-10-20

Table of contents

Ob	jetivos da Aula	1
Cor	nteúdo	1
	O Mapa da Computabilidade: Onde Estamos?	1
	Redutibilidade: A Ferramenta Universal	2
	Exemplo Prático: Provando que E_{TM} é Indecidível	2
	Completude: O Cume da Montanha	
	Exercícios de Verificação	4
Ref	rerências Bibliográficas	4
List	of Figures	
1	Passo a passo para provar que um novo problema (L) é indecidível	3
2	A_TM é o problema RE-Completo do qual a indecidibilidade se espalha para outros problemas via reduções.	

Objetivos da Aula

- Consolidar a habilidade de classificar problemas na hierarquia de decidibilidade (R, RE, co-RE, não-RE).
- Praticar a técnica de redução como a principal ferramenta para provar indecidibilidade.
- Reforçar o significado e a importância de problemas completos para uma classe.
- Aplicar o conhecimento teórico para analisar a computabilidade de novos problemas.

Conteúdo

O Mapa da Computabilidade: Onde Estamos?

Após várias aulas, temos um mapa claro do universo dos problemas computacionais. A habilidade mais crucial nesta etapa do curso é saber localizar um novo problema neste mapa.

i Definições Essenciais (Revisão)

- Decidível (R): Existe um algoritmo que sempre para com a resposta correta (sim/não). É a nossa "terra firme".
- Reconhecível (RE): Existe um algoritmo que garante parar com uma resposta "sim" para instâncias positivas, mas pode entrar em loop para instâncias negativas.
- Co-Reconhecível (co-RE): O complemento do problema é RE. O algoritmo garante parar com uma resposta "não", mas pode entrar em loop para instâncias positivas.
- Indecidível: Qualquer problema que não está em R.
- Não-Reconhecível: Problemas que não são nem RE nem co-RE. A "terra incógnita".
- Teorema Fundamental: $R = RE \cap co RE$. Se um problema e seu complemento são ambos reconhecíveis, então o problema é decidível.

Redutibilidade: A Ferramenta Universal

A redutibilidade $(A \leq_m B)$ é a nossa ferramenta mais poderosa. Ela nos permite transferir a "dificuldade" de um problema conhecido para um novo.

A Lógica Central: Se A é difícil e eu posso usar uma solução para B para resolver A, então B deve ser pelo menos tão difícil quanto A.

Receita para Provar que uma Linguagem L é Indecidível

- 1. Escolha um Problema Semente: Selecione uma linguagem S que você já sabe que é indecidível. Quase sempre, a melhor escolha é A_{TM} .
- 2. Construa a Redução: Mostre que $S \leq_m L$. Para isso, você precisa construir uma função computável f que transforma uma entrada w_S de S em uma entrada w_L de L.
- 3. A Construção de f: Geralmente, f recebe uma instância de S (ex: $\langle M, w \rangle$) e produz a descrição de uma **nova Máquina de Turing** M' como saída. O comportamento de M' é projetado para depender do resultado da computação de M em w.
- 4. **Prove a Equivalência**: Demonstre que a construção funciona nos dois sentidos: $w_S \in S \iff f(w_S) \in L$.
- 5. Conclua: Como S é indecidível e S se reduz a L, então L deve ser indecidível.

Diagrama: O Fluxo de uma Prova por Redução

Exemplo Prático: Provando que E_{TM} é Indecidível

Vamos usar a receita para provar que $E_{TM} = \{\langle M \rangle \mid L(M) = \emptyset\}$ é indecidível.

- 1. Problema Semente: A_{TM} .
- 2. **Objetivo**: Mostrar que $A_{TM} \leq_m E_{TM}$. Ops, isso parece difícil. A pergunta em A_{TM} é sobre aceitar uma string, enquanto E_{TM} é sobre aceitar nenhuma. Elas parecem opostas. Vamos tentar reduzir ao complemento, $\overline{E_{TM}} = \{\langle M \rangle \mid L(M) \neq \emptyset \}$.

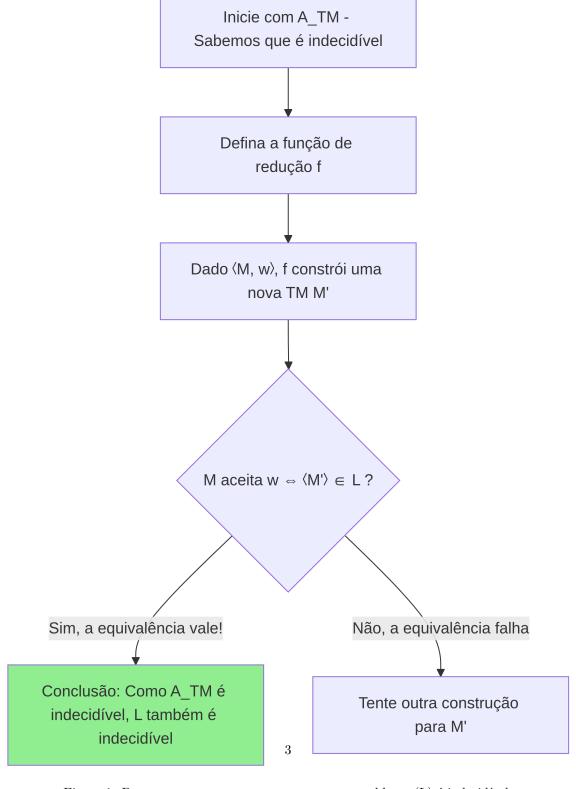


Figure 1: Passo a passo para provar que um novo problema (L) é indecidível.

- 3. Construção da Redução (f): A função f recebe uma entrada $\langle M, w \rangle$ para A_{TM} e produz uma saída $\langle M' \rangle$ para $\overline{E_{TM}}$.
 - M' (recebe uma entrada x):
 - 1. Ignore completamente a entrada x.
 - 2. Simule a execução de M na entrada w (a original).
 - 3. Se a simulação de M aceita w, então M' aceita x.
 - 4. Se a simulação de M rejeita ou entra em loop, M' também rejeita ou entra em loop.

4. Prova da Equivalência:

- (\Rightarrow): Se $\langle M, w \rangle \in A_{TM}$ (M aceita w), então M' em sua etapa 3 aceitará qualquer entrada x. Portanto, $L(M') = \Sigma^*$, que não é vazia. Logo, $\langle M' \rangle \in \overline{E_{TM}}$.
- (\Leftarrow): Se $\langle M, w \rangle \notin A_{TM}$ (M não aceita w), então a simulação em M' nunca chegará a um estado de aceitação. Portanto, M' nunca aceita sua entrada x. Logo, $L(M') = \emptyset$. Logo, $\langle M' \rangle \notin \overline{E_{TM}}$.
- 5. Conclusão: Provamos que $A_{TM} \leq_m \overline{E_{TM}}$. Como A_{TM} é indecidível, $\overline{E_{TM}}$ também é indecidível. Isso também nos diz que, como $\overline{E_{TM}}$ é reconhecível, ela deve estar em \mathbf{RE} R. Pelo Teorema Fundamental, isso implica que seu complemento, E_{TM} , não pode ser reconhecível (não está em \mathbf{RE}).

Completude: O Cume da Montanha

Um problema ser **completo** para uma classe significa que ele captura a essência da dificuldade de toda a classe.

- **RE-Completo**: Os problemas mais difíceis que ainda são semi-decidíveis (reconhecíveis). A_{TM} e $HALT_{TM}$ são os exemplos canônicos. Se você pudesse resolver A_{TM} , poderia resolver qualquer problema reconhecível.
- co-RE-Completo: Os problemas cujos complementos são RE-completos. Ex: E_{TM} .

Diagrama: Mapa de Reduções e Completude

Exercícios de Verificação

i Atividade Prática de Revisão

- 1. Classificação Rápida: Classifique as seguintes linguagens e justifique brevemente:
 - $L_1 = \{ \langle G \rangle \mid G \text{ \'e uma Gram\'atica Livre de Contexto e } L(G) = \emptyset \}.$
 - $L_2 = \{\langle M \rangle \mid M \text{ \'e uma TM que tem exatamente 10 estados} \}$.
 - $L_3 = \{ \langle M \rangle \mid M \text{ \'e uma TM que aceita a string 'aba'} \}.$
- 2. Construção de Redução: Prove que a linguagem $REGULAR_{TM} = \{\langle M \rangle \mid L(M) \text{ é uma linguagem regular}\}$ é indecidível. Siga a "receita" e construa uma redução a partir de A_{TM} .
- 3. Completude e Decidibilidade: Se uma linguagem L é RE-Completa, ela pode ser decidível? E se ela for co-RE-Completa? E se ela for tanto RE-Completa quanto co-RE-Completa? Explique.

Referências Bibliográficas

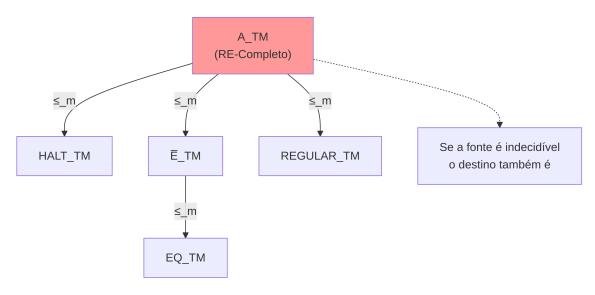


Figure 2: A_TM é o problema RE-Completo do qual a indecidibilidade se espalha para outros problemas via reduções.