Redutibilidade e Completude

Computabilidade e Complexidade

Márcio Nicolau

2025-10-20

Table of contents

Obj	jetivos da Aula	1
Cor	ateúdo	1
	O Conceito de Redutibilidade]
	Usando Reduções para Provar Indecidibilidade	2
	Problemas Completos: Os "Mais Difíceis"	
	Aplicação em Código: A Ideia da Redução	4
	Exercícios de Verificação	
Ref	erências Bibliográficas	7
$egin{smallmatrix} \mathbf{List} \ rac{1}{2} \ \end{matrix}$	of Figures A função computável 'f' atua como uma ponte entre o problema A e o problema B	
	"escalados" até ele através de uma redução	ļ

Objetivos da Aula

- $\bullet\,$ Definir formalmente o conceito de redutibilidade entre problemas.
- Aplicar a redutibilidade como a principal ferramenta para provar a indecidibilidade de novos problemas.
- Entender o que significa um problema ser "completo" para uma classe de linguagens.
- Identificar A_{TM} como o problema canônico RE-Completo.

Conteúdo

O Conceito de Redutibilidade

Nós provamos que o problema da aceitação, A_{TM} , é indecidível usando uma complexa prova por diagonalização. Agora, para cada novo problema que suspeitamos ser indecidível, teremos que criar uma nova prova por diagonalização do zero? Felizmente, não.

A redutibilidade é uma técnica que nos permite usar um problema que $j\acute{a}$ sabemos ser difícil (como A_{TM}) para provar que um novo problema também é difícil.

i A Intuição da Redução

Reduzir um problema A a um problema B significa mostrar que, se tivéssemos uma "caixa mágica" que resolve B, poderíamos usá-la para resolver A. Isso implica que B é **pelo menos tão difícil quanto** A. Se A é indecidível, B não pode ser decidível.

Definição Formal (Redutibilidade por Mapeamento):

Uma linguagem A é **redutível por mapeamento** (ou many-one redutível) à linguagem B, denotado $A \leq_m B$, se existe uma função **computável** f que transforma instâncias de A em instâncias de B, tal que para toda string w:

$$w \in A \iff f(w) \in B$$

A função f é chamada de **redução** de A para B. (Sipser, 2012, p. 235)

Diagrama: Como Funciona uma Redução

Usando Reduções para Provar Indecidibilidade

A principal aplicação da redutibilidade na teoria da computabilidade é o seguinte teorema:

la Teorema da Redução para Indecidibilidade

Se $A \leq_m B$ e a linguagem A é **indecidível**, então a linguagem B também deve ser **indecidível**.

Prova (por contradição):

Suponha que B fosse decidível por uma TM M_B . Poderíamos então construir um decisor para A da seguinte forma: 1. Dada uma entrada w para o problema A. 2. Use a função computável f para transformar w em f(w). 3. Execute o decisor M_B na entrada f(w). 4. Se M_B aceita, aceite w. Se M_B rejeita, rejeite w.

Este procedimento seria um decisor para A. Mas nós sabemos que A é indecidível. Chegamos a uma contradição. Portanto, nossa suposição de que B era decidível deve ser falsa.

Exemplo de Prova por Redução: $A_{TM} \leq_m HALT_{TM}$

Vamos provar que $HALT_{TM} = \{\langle M, w \rangle \mid M$ para em $w\}$ é indecidível, usando A_{TM} como nosso ponto de partida.

Construção da Redução (f):

A redução f recebe uma entrada $\langle M, w \rangle$ para o problema A_{TM} e deve produzir uma saída $\langle M', w' \rangle$ para o problema $HALT_{TM}$.

Definimos $f(\langle M, w \rangle) = \langle M', w \rangle$, onde M' é uma nova TM que se comporta da seguinte maneira:

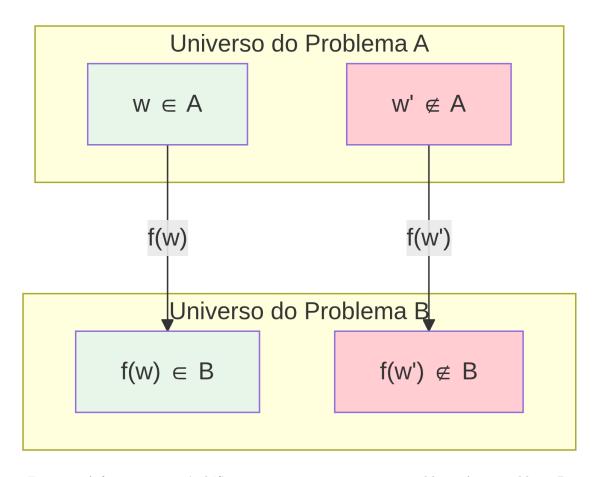


Figure 1: A função computável 'f' atua como uma ponte entre o problema A e o problema B.

M'(x):

- 1. Execute M na entrada w (ignorando a entrada original x).
- 2. Se M aceitar w, então M' aceita x (e para).
- 3. Se M rejeitar w, então M' entra em um loop infinito.

Análise da Redução:

- Se $\langle M, w \rangle \in A_{TM}$ (ou seja, M aceita w), então a máquina M' irá parar na sua etapa 2 para qualquer entrada. Portanto, $\langle M', w \rangle \in HALT_{TM}$.
- Se $\langle M, w \rangle \notin A_{TM}$ (ou seja, M rejeita ou entra em loop em w), então a máquina M' ou entrará em loop na sua etapa 1 (se M entrar em loop) ou na sua etapa 3 (se M rejeitar). Em ambos os casos, M' não para. Portanto, $\langle M', w \rangle \notin HALT_{TM}$.

A equivalência $\langle M, w \rangle \in A_{TM} \iff \langle M', w \rangle \in HALT_{TM}$ é mantida. Como A_{TM} é indecidível, concluímos que $HALT_{TM}$ também é indecidível.

Problemas Completos: Os "Mais Difíceis"

Dentro de uma classe de complexidade (como RE), alguns problemas se destacam por serem os "mais difíceis" do grupo. Um problema é "o mais difícil" se qualquer outro problema daquela classe pode ser reduzido a ele.

i Definição: Completude

Um problema B é **completo** para uma classe de linguagens \mathcal{C} (ou \mathcal{C} -completo) se ele satisfaz duas condições:

- 1. B está em \mathcal{C} $(B \in \mathcal{C})$.
- 2. Todo problema A em \mathcal{C} é redutível a B ($\forall A \in \mathcal{C}, A \leq_m B$).

A_{TM} é RE-Completo

O problema da aceitação, A_{TM} , é o exemplo canônico de um problema **RE-Completo**. (Sipser, 2012)

- 1. $A_{TM} \in \mathbf{RE}$: Nós já estabelecemos que A_{TM} é reconhecível por uma Máquina de Turing Universal que simula a máquina de entrada.
- 2. Todo problema em RE é redutível a A_{TM} : Seja L uma linguagem qualquer em RE. Por definição, existe uma TM, M_L , que a reconhece. A redução f de L para A_{TM} é trivial: $f(w) = \langle M_L, w \rangle$.
 - Se $w \in L$, então M_L aceita w, e, por definição, $f(w) = \langle M_L, w \rangle \in A_{TM}.$
 - Se $w \notin L$, então M_L não aceita w, e, por definição, $f(w) = \langle M_L, w \rangle \notin A_{TM}$. A redução funciona.

Diagrama: O Status de A_{TM} como RE-Completo

Aplicação em Código: A Ideia da Redução

A construção de uma redução é como escrever um "wrapper" ou uma "função de pré-processamento". O código Python abaixo não implementa uma redução de TM (que seria muito complexo), mas ilustra a *lógica* de transformar a instância de um problema em outro.

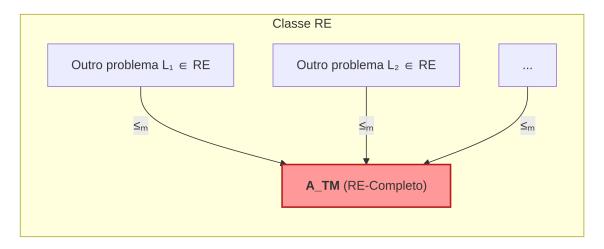


Figure 2: A_TM é o "cume da montanha" da classe RE. Todos os outros problemas em RE podem ser "escalados" até ele através de uma redução.

```
# Suponha que temos uma "caixa mágica" que resolve um problema B
def magic_solver_for_B(instancia_b):
   """Esta é a nossa hipotética caixa mágica (oráculo) para o problema B.
   Ex: B = Problema da Parada"""
   print(f" [Oráculo B] Recebeu a instância: {instancia_b}")
    # A lógica interna é desconhecida, mas sabemos que funciona.
   # Para este exemplo, vamos supor que ele resolve HALT_TM.
   # Instância é um tuple (maquina_str, entrada_str)
   maquina, entrada = instancia_b
    if "loop" in maquina:
       print(" [Oráculo B] Concluiu: NÃO PARA.")
        return False
    else:
       print(" [Oráculo B] Concluiu: PARA.")
       return True
# Queremos resolver o problema A, que sabemos ser difícil
# A = Problema da Aceitação (A TM)
def reduction_A_to_B(instancia_a):
    """Esta é a nossa função de redução 'f'.
   Transforma uma instância de A_TM em uma de HALT_TM."""
   print(f"[Redução] Recebeu instância de A: {instancia_a}")
   maquina_M, entrada_w = instancia_a
    # Construímos a descrição da nova máquina M'
```

```
maquina_M_prime = f"""
   def M prime(x):
       # Simula M em w
       resultado_M_em_w = simular("{maquina_M}", "{entrada_w}")
        if resultado_M_em_w == "aceita":
            return "para"
        else: # rejeita ou loop
           return "loop infinito" # Forçamos o loop
    0.00
   instancia_b = (maquina_M_prime, entrada_w)
   print(f"[Redução] Produziu instância de B: {instancia_b}")
   return instancia_b
def solver_for_A(instancia_a):
   """Este é o nosso decisor para A, construído usando a redução e o oráculo para B."""
    print(f"\nTentando resolver o problema A para a instância: {instancia_a}...")
   # 1. Reduzir a instância de A para uma instância de B
   instancia_b = reduction_A_to_B(instancia_a)
   # 2. Usar o oráculo de B para resolver a instância transformada
   resultado_b = magic_solver_for_B(instancia_b)
   print(f"Resultado final para A: {'ACEITA' if resultado_b else 'NÃO ACEITA'}")
   return resultado_b
# --- Exemplo de Uso ---
# Instância de A_TM: M aceita w?
instancia_problema_A = ("def M(w): return 'aceita'", "input_string")
solver_for_A(instancia_problema_A)
# Instância de A_TM: M rejeita w? (o que M' transformará em loop)
instancia_problema_A_2 = ("def M(w): return 'rejeita'", "input_string")
solver_for_A(instancia_problema_A_2)
Tentando resolver o problema A para a instância: ("def M(w): return 'aceita'", 'input_string')...
[Redução] Recebeu instância de A: ("def M(w): return 'aceita'", 'input_string')
[Redução] Produziu instância de B: ('\n def M_prime(x):\n
                                                                    # Simula M em w\n
                                                                                              resultado_
  [Oráculo B] Recebeu a instância: ('\n def M_prime(x):\n [Oráculo B] Concluir: NÃO BARA
                                                                    # Simula M em w\n
                                                                                              resultado_
  [Oráculo B] Concluiu: NÃO PARA.
Resultado final para A: NÃO ACEITA
Tentando resolver o problema A para a instância: ("def M(w): return 'rejeita'", 'input_string')...
```

```
[Redução] Recebeu instância de A: ("def M(w): return 'rejeita'", 'input_string')
[Redução] Produziu instância de B: ('\n def M_prime(x):\n # Simula M em w\n
[Oráculo B] Recebeu a instância: ('\n def M_prime(x):\n # Simula M em w\n
[Oráculo B] Concluiu: NÃO PARA.
Resultado final para A: NÃO ACEITA
False
```

resultado_

resultado_

Exercícios de Verificação

Atividade Prática

- 1. Conceitual: Se você prova que $A \leq_m B$ e você sabe que a linguagem B é decidível, o que você pode concluir sobre a linguagem A? Por quê?
- 2. **Redução**: Considere a linguagem $ALL_{TM} = \{\langle M \rangle \mid L(M) = \Sigma^* \}$, ou seja, o conjunto de TMs que aceitam todas as strings. Prove que ALL_{TM} é indecidível por meio de uma redução a partir de A_{TM} .
- 3. Completude: O problema $HALT_{TM}$ também é RE-completo. Para provar isso, quais duas condições você precisaria verificar?

Referências Bibliográficas

SIPSER, Michael. **Introdução à Teoria da Computação**. 3. ed. São Paulo, Brasil: Cengage Learning, 2012.