Problemas Decidíveis e Indecidíveis

Márcio Nicolau

2025-09-22

Table of contents

Obj	jetivos da Aula
	nteúdo
	1. Classificação de Problemas Computacionais
	2. O Teorema Fundamental da Decidibilidade
	Exemplos Clássicos de Problemas Indecidíveis
	Técnicas de Demonstração de Indecidibilidade
	Aplicação Prática: Verificação de Software
	Implicações Práticas da Indecidibilidade
	Exercícios de Verificação
Diag	grama: Mapa de Reduções entre Problemas Clássicos
	erências Bibliográficas
List	of Figures
$\frac{1}{2}$	Hierarquia de Classes de Linguagens por Decidibilidade

Objetivos da Aula

- Classificar problemas computacionais como decidíveis ou indecidíveis
- Compreender a relação entre o Problema da Parada e a indecidibilidade
- Aplicar técnicas de redução para demonstrar indecidibilidade
- Distinguir entre problemas decidíveis, reconhecíveis e não-reconhecíveis

Conteúdo

i Definições essenciais

- Problema Decidível: existe uma Máquina de Turing que sempre para e decide corretamente se a entrada pertence ou não à linguagem.
- Problema Indecidível: não existe tal Máquina de Turing. A linguagem pode ser reconhecível (RE) ou não-reconhecível.
- Reconhecível (RE): existe MT que aceita todas as entradas da linguagem; pode não parar para entradas fora da linguagem.
- Co-reconhecível (co-RE): o complemento da linguagem é reconhecível.
- Teorema fundamental: Uma linguagem é decidível se e somente se é reconhecível E coreconhecível.

1. Classificação de Problemas Computacionais

De acordo com Sipser (2012), podemos classificar os problemas computacionais em uma hierarquia baseada em sua tratabilidade computacional:

1.1. Problemas Decidíveis (Classe R)

Problemas para os quais existe um algoritmo (Máquina de Turing) que sempre para e fornece a resposta correta.

Exemplos de problemas decidíveis:

- Teste de primalidade de números
- Verificação se uma gramática livre de contexto gera uma string específica
- Equivalência de autômatos finitos determinísticos
- Conectividade em grafos finitos

1.2. Problemas Reconhecíveis mas Indecidíveis (Classe RE R)

Problemas para os quais existe um algoritmo que aceita todas as instâncias positivas, mas pode não parar para instâncias negativas.

Exemplo principal: - $A_{TM} = \{ \langle M, w \rangle \mid M \text{ aceita } w \}$ (Problema da Parada - versão aceitação)

1.3. Problemas Não-Reconhecíveis (Fora de RE)

Problemas para os quais não existe sequer um reconhecedor.

Exemplo principal:

• $\overline{A_{TM}} = \{\langle M, w \rangle \mid M$ não aceita $w\}$ (Complemento do Problema da Parada)

2. O Teorema Fundamental da Decidibilidade

I Teorema Central

Teorema: Uma linguagem L é decidível se e somente se L é reconhecível E \overline{L} (complemento de L) é reconhecível.

Prova (esboço):

- (\Rightarrow): Se L é decidível, então L e \overline{L} são claramente reconhecíveis.
- (\Leftarrow): Se L é reconhecível por M_1 e \overline{L} é reconhecível por M_2 , construa um decisor que executa M_1 e M_2 em paralelo. Uma das duas sempre aceita, determinando se $w \in L$ ou $w \in \overline{L}$.

Diagrama: Hierarquia de Classes de Linguagens

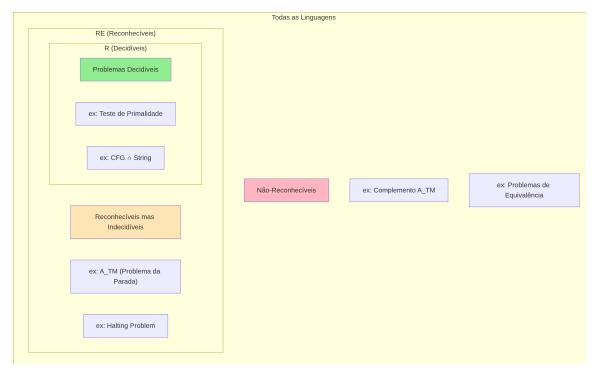


Figure 1: Hierarquia de Classes de Linguagens por Decidibilidade

Exemplos Clássicos de Problemas Indecidíveis

O Problema da Parada (Halting Problem)

Como visto na aula anterior, o problema fundamental:

 $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ para na entrada } w\}$

Por que é indecidível? A prova por diagonalização de Turing mostra que assumir a existência de um decisor leva a uma contradição lógica.

Problema da Aceitação (A_{TM})

 $A_{TM} = \{ \langle M, w \rangle \mid M \text{ aceita } w \}$

- Status: Reconhecível mas indecidível
- Reconhecedor: Simule M em w; aceite se M aceita
- Por que indecidível? Redução do Problema da Parada

Problema do Estado Vazio

$$E_{TM} = \{ \langle M \rangle \mid L(M) = \emptyset \}$$

Decide se uma Máquina de Turing aceita alguma string.

Prova de indecidibilidade por redução:

- Assuma que E_{TM} é decidível
- Construa um decisor para ${\cal A}_{TM}$ usando o decisor de ${\cal E}_{TM}$
- Contradição!

Problema da Equivalência

$$EQ_{TM} = \{\langle M_1, M_2 \rangle \mid L(M_1) = L(M_2)\}$$

Status: Nem reconhecível nem co-reconhecível

Técnicas de Demonstração de Indecidibilidade

Diagonalização

Técnica direta usada para provar que A_{TM} é indecidível. Constrói-se uma máquina "antagonista" que contradiz qualquer suposto decisor.

Redução (Redutibilidade)

Definição: Uma linguagem A é **redutível** a uma linguagem B (escrito $A \leq_m B$) se existe uma função computável f tal que:

$$w \in A \Leftrightarrow f(w) \in B$$

Teorema da Redução: Se $A \leq_m B$ e B é decidível, então A é decidível.

Contraposição: Se $A \leq_m B$ e A é indecidível, então B é indecidível.

Exemplo de Redução: $A_{TM} \leq_m HALT_{TM}$

Vamos mostrar que o Problema da Parada é indecidível usando redução.

Construção da redução:

```
Dado \langle M,w\rangle, construímos \langle M',w\rangle onde M' é uma modificação de M: M'(w):

1. Simule M em w

2. Se M aceita, aceite

3. Se M rejeita, entre em loop infinito

Análise:
```

- Se M aceita w: M' para (aceitando) $\langle M', w \rangle \in HALT_{TM}$
- Se M não aceita w: M' não para $\langle M', w \rangle \notin HALT_{TM}$

Logo, $\langle M, w \rangle \in A_{TM} \Leftrightarrow \langle M', w \rangle \in HALT_{TM}$

Aplicação Prática: Verificação de Software

```
def analisador_estatico_limitado(codigo, max_loops=1000):
   Simulação de um analisador estático que tenta detectar loops infinitos.
   Limitação: só pode detectar loops 'óbvios' ou usar timeout.
   # Contadores para detectar padrões suspeitos
   loop_counter = 0
   # Simula análise do código (muito simplificada)
   linhas = codigo.split('\n')
   for linha in linhas:
        if 'while True:' in linha and 'break' not in codigo:
           return "LOOP INFINITO DETECTADO (óbvio)"
        if 'for' in linha or 'while' in linha:
            loop_counter += 1
   if loop_counter > 3:
        return "POSSÍVEL COMPLEXIDADE ALTA (heurística)"
   return "ANÁLISE INCONCLUSIVA - não pode garantir terminação"
# Exemplo de uso
codigo_suspeito = """
def funcao_problematica(n):
   while n > 0:
       n = n + 1 \# Oops! Loop infinito
```

```
return n
codigo_complexo = """
def funcao_complexa(n):
    while condition_based_on_input(n):
        n = transform(n)
        if complex_condition(n):
            break
    return n
print("Análise do código suspeito:")
print(analisador_estatico_limitado(codigo_suspeito))
print("\nAnálise do código complexo:")
print(analisador_estatico_limitado(codigo_complexo))
print("\nConclusão: Análise completa é impossível devido à indecidibilidade!")
Análise do código suspeito:
ANÁLISE INCONCLUSIVA - não pode garantir terminação
Análise do código complexo:
ANÁLISE INCONCLUSIVA - não pode garantir terminação
```

Implicações Práticas da Indecidibilidade

Limitações dos Compiladores

- Impossível detectar todo código morto
- Impossível otimizar perfeitamente todos os programas
- Análise estática tem limites fundamentais

Verificação Formal

- Verificação automática completa é impossível
- Necessidade de especificações e invariantes
- Ferramentas semi-automáticas são o máximo possível

Segurança de Software

• Impossível verificar automaticamente se um programa é "seguro"

Conclusão: Análise completa é impossível devido à indecidibilidade!

- Análise de malware tem limitações teóricas
- Necessidade de abordagens heurísticas

Exercícios de Verificação

Atividade Prática

- 1. Classificação: Determine se os seguintes problemas são decidíveis, reconhecíveis mas indecidíveis, ou não-reconhecíveis:
 - $L_1 = \{ \langle M \rangle \mid M \text{ aceita pelo menos } 100 \text{ strings} \}$
- $L_2 = \{\langle M \rangle \mid M$ aceita exatamente 42 strings} $L_3 = \{\langle M \rangle \mid M$ aceita exatamente 42 strings} $L_3 = \{\langle M_1, M_2 \rangle \mid L(M_1) \cap L(\underline{M_2}) = \emptyset\}$ 2. **Redução**: Mostre que $E_{TM} \leq_m \overline{A_{TM}}$ (o complemento do problema de aceitação). 3. **Construção**: Dado que A_{TM} é indecidível, prove que $\overline{A_{TM}}$ não é reconhecível.

Diagrama: Mapa de Reduções entre Problemas Clássicos

Referências Bibliográficas

SIPSER, Michael. Introdução à Teoria da Computação. 3. ed. São Paulo, Brasil: Cengage Learning, 2012.

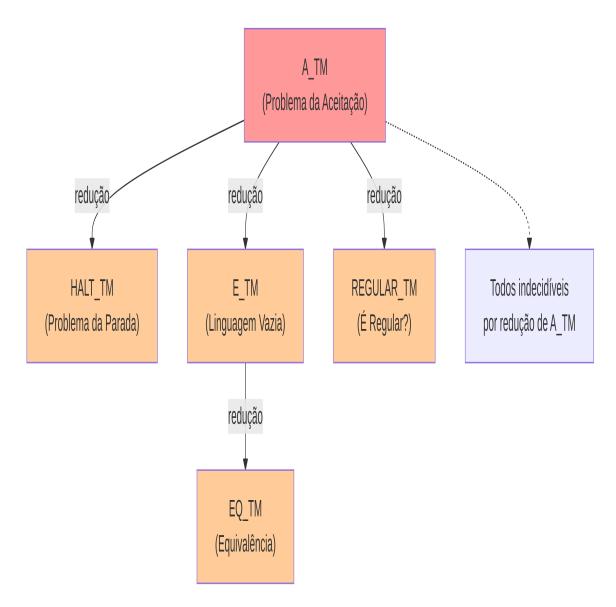


Figure 2: Mapa de Reduções entre Problemas Indecidíveis Clássicos